

BUSINESS MATHEMATICS in CANADA

F. ERNEST JEROME

TRACY WORSWICK

制作者：BookX．net 读书练剑

NINTH EDITION

BUSINESS MATHEMATICS in CANADA

F. Ernest Jerome
Tracy Worswick
Conestoga College

BUSINESS MATHEMATICS IN CANADA

Ninth Edition

Copyright © 2017, 2014, 2011, 2008, 2003, 2000 by McGraw-Hill Ryerson Limited. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of McGraw-Hill Ryerson Limited, or in the case of photocopying or other reprographic copying, a license from The Canadian Copyright Licensing Agency (Access Copyright). For an Access Copyright license, visit www.accesscopyright.ca or call toll free to 1-800-893-5777.

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a Web site does not indicate an endorsement by the authors or McGraw-Hill Ryerson, and McGraw-Hill Ryerson does not guarantee the accuracy of the information presented at these sites.

ISBN-13: 978-1-25-926582-2
ISBN-10: 1-25-926582-X
1234567890 TCP 1987
Printed and bound in Canada.
Care has been taken to trace ownership of copyright material contained in this text; however, the publisher will welcome any information that enables them to rectify any reference or credit for subsequent editions.

Portfolio and Program Manager: Karen Fozard
Product Manager: Sara Braithwaite
Senior Marketing Manager: Cathie Lefebvre
Product Developer: Erin Catto
Photo/Permissions Research: Photo Affairs, inc.
Senior Product Team Associate: Marina Seguin
Supervising Editor: Joanne Limebeer
Copy Editor: Kelli Howey
Plant Production Coordinator: Sarah Strynatka
Manufacturing Production Coordinator: Emily Hickey
Cover Design: Lightbox Visual Communications Inc.
Cover Images: Image Source/Alamy Stock Photo, Polygraphus/Getty Images
Interior Design: Michelle Losier
Composition: Aptara, Inc.
Page Layout: Tom Dart
Printer: Transcontinental Printing Group

About the Authors

F. Ernest Jerome received a B.Sc. degree in Honours Physics from McMaster University, where he was that university's first undergraduate to be a prize-winner in the annual Canadian Association of Physicists' Examination national competition. After earning a graduate degree in Oceanography at the University of British Columbia, he was appointed head of the Physics Department at Vancouver Island University (VIU) in Nanaimo, BC. Professor Jerome later obtained an MBA in finance from UBC, where he was awarded the Schulich Fellowship for Entrepreneurship. He subsequently taught courses in busi-
 ness mathematics, corporate finance, personal financial planning, mutual funds, and securities analysis in VIU's Faculty of Business. He holds a Chartered Financial Planner designation, and received the 1987 Outstanding Achievement Award from the Canadian Institute of Financial Planning.

Tracy Worswick holds degrees in Mathematics from the University of Waterloo and Mathematics Education from the University of Western Ontario. Tracy's passion for teaching and desire to deliver quality mathematics education stems from over 30 years of experience teaching Mathematics, Statistics, Computer Science, Business, and Marketing Research courses in high schools and colleges in Ontario and Alberta. For the past 18 years, she has taught Mathematics and Statistics in Conestoga College's School of Business in Kitchener, Ontario.

Brief Contents

CHAPTER 1 Review and Applications of Basic Mathematics 1
Appendix 1A: The Texas Instruments BA II PLUS Format Settings 34
CHAPTER 2 Review and Applications of Algebra 36
CHAPTER 3 Ratios and Proportions 92
CHAPTER 4 Mathematics of Merchandising 130
4.2 Supplement: Other Notations for Terms of Payment (on Connect)
4.3 Supplement: Diagram Model for Markup Problems (on Connect)
CHAPTER 5 Applications of Linear Equations 170
Appendix 5A: The Texas Instruments BA II PLUS Break-Even Worksheet 209
CHAPTER 6 Simple Interest 211
Appendix 6A: An Aid for Determining the Number of Days in Each Month 244
Appendix 6B: The Texas Instruments BA II PLUS Date Worksheet 245
CHAPTER 7 Applications of Simple Interest 247
Appendix 7A: Promissory Notes 274
CHAPTER 8 Compound Interest: Future Value and Present Value 280
Appendix 8A: Instructions for Specific Models of Financial Calculators 334
CHAPTER 9 Compound Interest: Further Topics and Applications 335
Appendix 9A: The Texas Instruments BA II PLUS Interest Conversion Worksheet 364
Appendix 9B: Logarithms 365
Appendix 9C: Annualized Rates of Return and Growth (on Connect)
CHAPTER 10 Ordinary Annuities: Future Value and Present Value 366
CHAPTER 11 Ordinary Annuities: Periodic Payment, Number of Payments, and Interest Rate 407
Appendix 11A: Derivation of the Formula for n from the Formula for FV (on Connect)
Appendix 11B: The Trial-and-Error Method for Calculating the Interest Rate per PaymentInterval (on Connect)
CHAPTER 12 Annuities Due 435
Appendix 12A: Setting Your Calculator in the Annuity Due Mode 473
CHAPTER 13 Annuities: Special Situations 474
CHAPTER 14 Loan Amortization: Mortgages 500
14.4: Mortgage Loans: Additional Topics (on Connect)
Appendix 14A: Instructions for the Texas Instruments BA II PLUS Amortization Worksheet 544
Appendix 14B: Amortization Functions on the Sharp EL-738 Calculator 545
CHAPTER 15 Bonds and Sinking Funds 546
Appendix 15A: Instructions for the Texas Instruments BA II PLUS Bond Worksheet 581
CHAPTER 16 Business Investment Decisions 583
Answers to Odd-Numbered Problems AN-1
Glossary GL-1
Index IN-1Summary of Notation (on Connect)Summary of Key Formulas (on Connect)How to Succeed in Business Mathematics (on Connect)
Example Problems Solved Using the Sharp EL-733A Calculator (on Connect)

Contents

Chapter 1
Review and Applications of Basic Mathematics 1
1.1 Order of Operations 2
1.2 Fractions, Decimals, and Percents 4
Definitions 4
Decimal and Percent Equivalents 5
Rounding of Decimal and Percent Equivalents 6
Evaluating Complex Fractions 9
Calculating Percent of a Number 9
*1.3 Payroll 13
Salaries 13
Hourly Wages 14
Commissions 16
1.4 Simple and Weighted Averages 19
Simple Average 19
Weighted Average 19
*1.5 Taxes 26
Goods and Services Tax (GST); Harmonized Sales
Tax (HST) 26
Provincial Sales Tax (PST) 27
Property Tax 28
Review Problems 31
Appendix 1A: The Texas instruments BA II PLUS Format Settings 34
Chapter 2
Review and Applications of Algebra 36
2.1 Operations with Algebraic Expressions 37
Definitions 37
Addition and Subtraction 38
Multiplication and Division 39
Substitution 40
2.2 Rules and Properties of Exponents 44
2.3 Solving Linear Equations 48
Solving a Linear Equation in One Unknown 48
2.4 Manipulating Equations and Formulas 52
2.5 Solving Word Problems 56
A General Approach for Solving Word Problems 56

2.6 The Basic Percentage Problem
 63

2.7 Percent Change 68
*2.8 Application: Investment Returns from Stocks and Mutual Funds 78
Review Problems 88
Chapter 3
Ratios and Proportions 92
3.1 Ratios 93
3.2 Proportions 98
3.3 Application: Allocation and Proration 105
3.4 Application: Exchange Rates and Currency Conversion 111
*3.5 Application: Appreciation and Depreciation of Currencies 120
*3.6 Application: Index Numbers 124
Review Problems 127
Chapter 4
Mathematics of Merchandising 130
4.1 Trade Discounts 131
4.2 Cash Discounts and Terms of Payment 139
Terms of Payment 140
Partial Payments 142
4.3 Markup 146
The Connection between the Net Price, N, and theCost, C148
4.4 Markdown 155
*4.5 Comprehensive Applications 159
Review Problems 167
4.2 Supplement: Other Notations for Terms of Payment (on Connect)
4.3 Supplement: Diagram Model for Markup Problems (on Connect)
Chapter 5
Applications of Linear Equations 170
5.1 Introduction to Graphical Techniques 171
Graphing a Linear Equation in Two Unknowns 171
The Slope-Intercept Form of a Linear Equation 173
Graphical Method for Solving Two Equations in TwoUnknowns 175
5.2 Solving Two Equations in Two Unknowns 176
5.3 Introduction to Cost-Volume-Profit
Analysis 183
Fixed Costs and Variable Costs 183
Cost-Volume-Profit (CVP) Analysis 184
5.4 Graphical Approach to CVP Analysis 186
5.5 Revenue and Cost Function Approach to CVP Analysis 191
5.6 Contribution Margin Approach to CVPAnalysis200
Contribution Rate 204
Review Problems 206
Appendix 5A: The Texas Instruments BA II PLUS Break-Even Worksheet 209
Chapter 6
Simple Interest 211
6.1 Basic Concepts 212
6.2 Determining the Time Period (Term) 216
Variable or Floating Interest Rates 219
6.3 Maturity Value (Future Value) and Principal (Present Value) 222
6.4 Equivalent Payments 227
Comparing Payments 229
6.5 The Equivalent Value of a Payment Stream 233
*6.6 Loans: A Principle about Principal 239
Review Problems 242
*Appendix 6A: An Aid for Determining the Number of Days in Each Month 244
Appendix 6B: The Texas Instruments BA II PLUS
Date Worksheet 245
Chapter 7
Applications of Simple Interest 247
*7.1 Savings Accounts and Short-Term GICs 248
7.2 The Valuation Principle 252
7.3 Treasury Bills and Commercial Paper 255
7.4 Demand Loans 259
Common Terms and Conditions 259
Revolving Loans 259
Fixed-Payment Loans 263
*7.5 Canada Student Loans 268
Review Problems 271
Appendix 7A: Promissory Notes 274
Concepts and Definitions 274
Discounting Promissory Notes 276
Chapter 8
Compound Interest: Future Value and Present Value 280
8.1 Basic Concepts 281
8.2 Future Value (or Maturity Value) 284
Calculating Future Value 284
Graphs of Future Value versus Time 287
8.3 Present Value 295
A General Principle Regarding the Present Value of Loan Payments 299
8.4 Using Financial Calculators 305
Key Definitions and Calculator Operation 305
Cash-Flow Sign Convention 307
8.5 Other Applications of Compounding 310
Compound Interest Investments 310
Valuation of Investments 316
Compound Growth 318
8.6 Equivalent Payment Streams 324
Review Problems 331
Appendix 8A: Instructions for Specific Models of
334
Chapter 9
Compound Interest: Further Topics and Applications 335
9.1 Calculating the Periodic Interest Rate, i 336
Algebraic Method 336
Financial Calculator Method 336
9.2 Calculating the Number of CompoundingPeriods, n 343
Algebraic Method 343
Financial Calculator Method 343
Noninteger Values for n 345
Valuing Strip Bonds and Other Single-PaymentInvestments 347
9.3 Effective Interest Rate 351
9.4 Equivalent Interest Rates 358
Review Problems 362
*Appendix 9A: The Texas Instruments BA II PLUS
Interest Conversion Worksheet 364
*Appendix 9B: Logarithms 365
Rules of Logarithms 365
*Appendix 9C: Annualized Rates of Return and Growth (on Connect)
Chapter 10
Ordinary Annuities: Future Value andPresent Value366
10.1 Terminology 367
10.2 Future Value of an Ordinary Simple Annuity 368
Future Value Using the Algebraic Method 368
Future Value Using the Financial Calculator
Functions 369
Contribution of Each Payment to an Annuity's Future
Value 370
Applications of the Future Value of an Annuity 371
10.3 Present Value of an Ordinary Simple Annuity 378
Present Value Using the Algebraic Method 378
Present Value Using the Financial Calculator
Functions 379
Contribution of Each Payment to an Annuity's
Present Value 380
Applications of the Present Value of anAnnuity381
10.4 Future Value and Present Value of Ordinary General Annuities 394
Review Problems 404
Chapter 11
Ordinary Annuities: Periodic Payment,Number of Payments, and InterestRate 407
11.1 Calculating the Periodic Payment 408
Algebraic Method 408
Financial Calculator Method (Texas Instruments BA IIPLUS) 408
11.2 Calculating the Number of Payments 417
11.3 Calculating the Interest Rate 426
Review Problems 431
*Appendix 11A: Derivation of the Formula for \boldsymbol{n} from the Formula for FV (on Connect)
*Appendix 11B: The Trial-and-Error Method forCalculating the Interest Rate per PaymentInterval (on Connect)
Chapter 12
Annuities Due 435
12.1 Future Value of an Annuity Due 436
Future Value Using the Algebraic Method 436
Future Value Using the Financial Calculator Functions 437
12.2 Present Value of an Annuity Due 444
Present Value Using the Algebraic Method 444
Present Value Using the Financial Calculator
Functions 444
Applications of the Present-Value Calculation 444
12.3 Calculating the Periodic Payment, Number of Payments, and Interest Rate 450
The Mathematics of Vehicle Leasing 451
*12.4 Comprehensive Annuity Problems 462
Review Problems 470
Appendix 12A: Setting Your Calculator in the Annuity Due Mode 473
Chapter 13
Annuities: Special Situations 474
13.1 Deferred Annuities 475
13.2 Perpetuities 485
*13.3 Constant-Growth Annuities 492
Valuation of Common Shares 492
Review Problems 497
Chapter 14
Loan Amortization: Mortgages 500
14.1 Loan Amortization 501
Amortization Schedules 501
Precise Calculation of a Loan's Balance 504
Calculating the Final Payment 507
Partial Amortization Schedule 509
14.2 Direct Calculation of the Interest and Principal Components of a Payment or Group of Payments 513
Interest and Principal Components of Investment Annuity Payments 516
14.3 Mortgage Loans: Fundamentals 522
Basic Concepts and Definitions 522
Calculating the Payment and Balance 523
Qualifying for a Mortgage Loan 527
Common Prepayment Privileges and Penalties 532
*14.4 Mortgage Loans: Additional
Topics (on Connect)
The Effective Cost of Borrowing 14.4-1
Valuation of Mortgages 14.4-4
Vendor Take-Back Mortgage 14.4-7
Review Problems 542
*APPENDIX 14A: Instructions for the TexasInstruments BA II PLUS AmortizationWorksheet 544
*APPENDIX 14B: Amortization Functions on the Sharp EL-738 Calculator 545
Chapter 15
Bonds and Sinking Funds 546
15.1 Basic Concepts and Definitions 547
15.2 Bond Price on an Interest Payment Date 548 Rates 548
Calculating a Bond's Price on an Interest Payment Date 550
Bond Premium and Bond Discount 553
15.3 Yield to Maturity on an Interest Payment Date 557
15.4 Bond Price on Any Date 561
Calculating a Bond's Price on Any Date 561
Quotation of Bond Prices 563
*15.5 Sinking Funds 569
Sinking Fund for a Capital Expenditure 569
Sinking Fund for Debt Retirement 573
Review Problems 580
Appendix 15A: Instructions for the Texas Instruments BA II PLUS Bond Worksheet 581
Chapter 16
Business Investment Decisions 583
16.1 Comparing Business to Personal Investment Decisions 584
The Econo
Cost Minimization 586
16.2 The Net Present Value of an Investment 589
16.3 Comparing Investment Projects 595
Capital Rationing 596
Mutually Exclusive Projects 597
16.4 Internal Rate of Return 603
16.5 Comparing NPV and IRR Approaches 605
16.6 The Payback Period 609
Review Problems 613
Answers to Odd-Numbered Problems AN-1
Glossary GL-1
Index IN-1
Summary of Notation (on Connect)
Summary of Key Formulas (on Connect)
How to Succeed in Business Mathematics (on Connect)
Example Problems Solved Using the Sharp EL-733A Calculator (on Connect)
1.1 Approach for Problems on Averages 20
2.1 The Components of Investment Returns 78
4.1 The Distribution Chain 131
4.2 A Sample Sales Invoice 140
4.3 Interpreting the Terms of Payment in Ordinary Dating 141
4.4 Discount and Credit Periods for the Ordinary Dating Case 2/10, n/30 141
4.5 Markup Diagram 147
4.6 Discount and Credit Periods for the EOM Dating Case 2/10, n/30, EOM 4.2S-1
4.7 Discount and Credit Periods for the ROG Dating Case $2 / 10$, n/30, ROG 4.2S-1
4.5 Markup Diagram 4.3S-1
5.1 Break-Even Chart 186
6.1 Graphs of Present Values and Future Values of $\$ 100$ 229
6.2 Entering Given Data on a Time Diagram 234
6.3 Showing the Solution Steps on a Time Diagram 234
6.4 "Knuckle Months" Have 31 Days 244
7.1 Demand Loan Repayment Schedule 261
7.2 Term Promissory Note 274
7.3 Demand Promissory Note 275
7.4 Calculating the Proceeds of a Promissory Note 276
8.1 Converting Interest to Principal at the End of Each Compounding Period 281
8.2 The Components of the Future Value of \$100 288
8.3 Future Values of $\$ 100$ at Various Compound Rates of Interest 289
8.4 Future Values of $\$ 100$ at the Same Nominal Rate but Different Compounding Frequencies 290
8.5 The Present Value of $\$ 1000$ (Discounted at 10% Compounded Annually) 296
10.1 Time Diagram for an n-Payment Ordinary Annuity 367
10.2 The Future Value of a Four-Payment Ordinary Simple Annuity 369
10.3 Contribution of Each Payment to an Annuity's Future Value 371
10.4 The Present Value of a Four-Payment Ordinary Simple Annuity 379
10.5 Contribution of Each Payment to an Annuity's Present Value 381
12.1 Time Diagram for an n-Payment Annuity Due 436
12.2 The Relationship between $F V$ (due) and FV 437
12.3 Annuity Classification Flow Chart 462
13.1 Time Diagram for a Deferred Annuity 475
13.2 The Present Value of a Deferred Annuity 476
13.3 Value of \$100,000 Investment That Pays Out Only Its Interest Earnings 485
13.4 Value of $\$ 100,000$ Investment That Pays Out More Than Its Interest Earnings 486
13.5 Time Diagram for the Payments of an Ordinary Perpetuity 486
14.1 A Loan Is Equivalent to a Series of Payments and the Principal Balance After the Payments 505
14.2 Placing the Focal Date at the Balance Date 505
14.3 The Composition of Mortgage Payments During a 25 -Year Amortization 524
14.4 A Mortgage's Declining Balance During a 25-Year Amortization 524
15.1 Effects of Interest Rate Changes on Bond Prices 549
15.2 Expected Payments from a Bond 550
15.3 Bond Price versus Market Rate of Return for Two Maturities of 7\% Coupon Bonds 553
15.4 Dependence of Bond Premium on Time to Maturity 554
15.5 Calculating a Bond's Price on Any Date 561
15.6 Price Change over Time for a Bond Trading at a Premium 564
15.7 Price Change over Time for a Bond Trading at a Discount 564
TABLE
1.1 GST, HST, and PST Rates (as of January 1, 2016) 27
2.1 Forms of Income and Capital Gain from Various Types of Investments 78
2.2 Income and Price Data for Selected Stocks 80
2.3 Income and Price Data for Selected Mutual Funds 80
3.1 Foreign Exchange Rates (Noon ET, Toronto, February 25, 2016) 113
3.2 Currency Cross Rates (Noon ET, Toronto, February 25, 2016) 113
6.1 The Number of Days in Each Month 216
6.2 The Serial Numbers for Each Day of the Year 217
7.1 Treasury Bill and Commercial Paper Rates (October 23, 2015) 256
8.1 Compounding Frequencies and Periods 282
8.2 Interest Rates (\%) on Unmatured Canada Premium Bonds 314
8.3 Strip Bond Price and Yield Quotations (October 20, 2015) 316
9.1 Strip Bond Price and Yield Quotations (November 10, 2015) 347
10.1 Distinguishing Characteristics of Annuity Categories 367
14.1 Column Headings for an Amortization Schedule 501
15.1 Relative Prices of $\$ 1000$ Face Value Bonds 548
15.2 Bond Price Quotations (January 13, 2016) 565
SECTION Points of Interest
2.7 Following the Ups and Downs of Gas Prices in Canada 70
2.7 CBC's Marketplace Investigates Shrinking Products 71
2.8 False Profits and Bull Marketing 81
2.8 A 20\% Gain Doesn't Offset a 20\% Loss 84
3.2 The Price-to-Performance Ratio 102
3.4 The Price of Convenience 115
3.5 Any Free Lunches? 122
4.2 The Cost of Not Taking a Discount 142
4.3 Markup versus Margin 150
4.4 Going for the Bait in Rebates 157
4.5 Misleading Price Representation 163
5.3 The Dragons Do the Math 185
6.2 Which Years Are Leap Years? 217
6.2 Card Tricks: Taking More Interest 220
7.4 Improving the Score on Your Credit Report 265
7.5 Repaying Student Loans Is a Must 269
8.2 The "Magic" of Compound Interest 291
8.5 RRSP vs. TFSA 315
9.2 The Rule of 72 347
9.3 Not in Your Best Interest 354
10.2 Your Potential to Become a Millionaire! 375
10.3 "Got a Million Dollar Talent?" 389
10.4 The Alphabet Soup of Tax-Favoured Investing 400
11.1 Retirement Dreams Then and Now 412
11.2 What Is Your Net Worth? 422
11.3 Should You Choose a Cash-Discount Incentive or Low-Interest-Rate Financing? 429
12.1 A Painful Truth and a Positive Spin 441
12.2 Rent to Own Real Estate 447
12.3 "Rent-to-Own" or "Rent Too Onerous"? 456
13.1 Card Tricks: The "No-Interest, No-Payments-for-a-Year" Trap 482
13.3 Such a Deal! 493
14.1 Just When You Thought You Had It All Figured Out 511
14.3 No-Money-Down Mortgages Are No More 528
14.3 An Analysis of the Interest "Savings" from Choosing a Shorter Amortization Period 531
14.4 Mortgaging Your Future! 14.4-4
CHAPTER List of Cases
3 Calculations for an Investment Portfolio 129
5 Estimating the Contribution Rate in a Multi-Product Business 209
7 Debt Consolidation 273
11 Should You Borrow to Make an RRSP Contribution? 434
12 A "Lotto" Money 473
13 Should You Choose to Start Receiving the CPP Retirement Pension at Age 60 Instead ofAge 65? 499

Preface

Most business administration programs in Canadian colleges include an introductory course in business mathematics or mathematics of finance. Business Mathematics in Canada is intended for use in such courses. The text's primary objective is to support the learning of mathematics (other than statistics) needed to succeed in fields such as accounting, finance, management, marketing, personal financial planning, and business information systems.

This book may be adapted to either a one- or a two-semester course in business mathematics. It is suitable for courses that emphasize either an algebraic approach or a pre-programmed financial calculator approach to compound interest problems. (Optional spreadsheet templates provide a third alternative in many areas for students who have a basic familiarity with Microsoft Excel software.) Both algebraic solutions and financial calculator solutions are presented in most example problems for compound interest topics.

NEW IN THE NINTH EDITION

The ninth edition contains numerous changes reflecting input from faculty across the country, through reviews as well as invaluable suggestions from users of the eighth edition.

New and Updated Examples The worked examples now include 20 new problems with full solutions; another 50 examples have been updated to reflect current rates and prices.

New Calculator-Free Problems and New and Updated Exercises Calculator-free problems are new in Chapters 1 through 4 and provide exercises where students can focus primarily on the problem-solving process. The Exercises contain 100 new problems, and another $\mathbf{1 0 0}$ problems have been updated to reflect current rates and prices.

Updated Tables and Charts The exposition, tables, and example problems incorporate the most recent data at the time of writing.
Solving Two Equations and Two Unknowns has been moved to Chapter 5 with Applications of Linear Equations.

Return on Investments has been moved to Chapter 2 with the Basic Percentage Problem and Percent Change.
New Tips and Traps The ninth edition features 7 new Tips and Traps-on "Common Rounding Errors" and "Determining the Weight Factor" in Chapter 1; "The Immediate-Left Trick" and "Excel Applications in Business Mathematics" in Chapter 2; "How Low Does It Go?" and "Always Use Given Information" in Chapter 3; and "Cost’ Is Not the Selling Price" in Chapter 4.
Revised Cases and Points of Interest These features have been revised and refreshed to incorporate recent developments and time-sensitive data. The ninth edition features 7 new Points of Interest: "Following the Ups and Downs of Gas Prices in Canada" in Chapter 2, which looks at percent increases and decreases at the gas pumps; "Markup versus Margin" in Chapter 4, which examines the main differences between the two concepts; "Which Years Are Leap Years?" in Chapter 6 , which explains various techniques for determining leap years; "Got a Million Dollar Talent?" in Chapter 10, which investigates the real time value of a $\$ 1 \mathrm{M}$ prize; "What Is Your Net Worth?" in Chapter 11, which examines this measure of personal wealth and provides a template for students to calculate their own net worth; "Rent to Own Real Estate" in Chapter 12, which explains the basics of rent to own real estate deals; and "No-Money-Down Mortgages Are No More" in Chapter 14, which summarizes the changes in Canadian mortgage rules over the past 10 years.

PEDAGOGICAL FEATURES

Canadian Applications Throughout the exposition, Example problems, Exercise problems, and Points of Interest, the book presents a wide range of applications of mathematics in Canadian business and finance. Every effort has been made to reflect current practices. Real financial instruments and real economic data are frequently used.

Wide Selection of Problems Each section of a chapter is followed by a set of problems for applying and reinforcing the new material. The text contains over 2000 problems and concept questions. Questions are organized by "calculator-free," "basic," "intermediate," and "advanced." Considerable effort has been made to create problems that are instructive, practical, realistic, and interesting.

Graphs and Diagrams This text makes extensive use of graphs, diagrams, and interactive charts.

Solved Example Problems These examples provide detailed illustrations and applications of concepts in a step-by-step format.

```
EXAMPLE 6.4B CALCULATING AN EQUIVALENT PAYMENT AT AN EARLIER DATE
What is the value of a payment to be received on March 12 if it is economically equivalent to a $1000 payment
originally due on the subsequent July 6, if money is worth 6.8% per year?
SOLUTION
Since we want an equivalent payment at an earlier date, we should calculate the present value of $1000 on
March }12
```


The number of days in the interval is

$$
20(\text { for March })+30+31+30+5(\text { for July })=116
$$

Substituting $S=\$ 1000, r=6.8 \%$, and $t=\frac{116}{365}$ into Formula (6-3), we obtain

$$
P=\frac{S}{1+r t}=\frac{\$ 1000}{1+0.068\left(\frac{116}{365}\right)}=\$ 978.85
$$

$\$ 978.85$ on March 12 is equivalent to $\$ 1000$ on the subsequent July 6 .

Tips and Traps Boxed elements inserted at appropriate points draw the student's attention to simplifications, pitfalls, shortcuts, calculator procedures, and common errors.

TRAP

```
Percent Changes Are Not Additive
As the preceding example demonstrates, the overall percent change for a series of intervals cannot be obtained simply by adding the percent changes for the individual intervals. The reason is that the initial value for the percent change calculation is different in each interval.
```

Point of Interest Boxes Most chapters contain two or three intriguing illustrations of the application or misapplication of mathematics to business and personal finance. See the Points of Interest list that follows the table of contents.

POINT OF INTEREST

The Price-to-Performance Ratio
People in the computer industry have recognized that the price-to-performance ratio comparison presented in advertisements can actually provide a reason not to purchase the advertised computer. Think about what, at a basic mathematical level, will make the price-to-performance ratio high. A large numerator (high price) and/or a small denominator (low performance) will make the ratio high. Therefore, a higher ratio represents a lower "bang for your buck."
The price-to-performance ratio can also be used to track changes in products over time. Computers in particular have a constantly fluctuating price-to-performance ratio. Over time the price of computers has dropped dramatically, making them more accessible to the average consumer while processing power has improved significantly.

App 4 That Each boxed feature provides key words that are searchable on a smart device to find free and paid apps relevant to the topic under discussion.

APP (4) THAT

To find a quick way either to solve an equation or to gain further understanding on how to solve an equation in your homework problems, search the App Store on your tablet, smartphone, or smart watch using the key words EQUATION SOLVER. You will find many free and paid apps that generate step-by-step solutions to guide you through the solving process either by typing in the equation or by taking a photo of the equation to be solved.

Calculator Callout Boxes Many compound interest calculations can be performed using a calculator's financial functions. In the solutions for Example problems, we employ callout boxes: (1) to provide a clear visual indication of the algebraic computations that may be executed using the calculator's pre-programmed financial functions; and (2) to present the keystroke operations for employing the financial functions.

```
EXAMPLE 10.2A THE FUTURE VALUE OF PERIODIC INVESTMENTS
    Heinz has been contributing $300 at the end of each month for the past 15 months to a savings plan that earns 6%
    compounded monthly. What amount will he have one year from now if he continues with the plan?
    SOLUTION
    The total amount will be the future value of }n=15+12=27\mathrm{ contributions of PMT =$300 each. Payments and
    compounding both occur at one-month intervals. Therefore, the payments form an ordinary simple annuity
    having i=\frac{Q60}{12}}=0.5%\mathrm{ per month.
\(\left.\begin{array}{rl}F V & =P M T\left[\frac{(1+i)^{n}-1}{i}\right] \\
& =\$ 300\left[\frac{(1.005)^{27}-1}{0.005}\right] \\
& =\$ 300\left(\frac{1.14415185-1}{0.005}\right) \\
& =\$ 8649.11\end{array}\right\}\)\begin{tabular}{r}
\begin{tabular}{r}
\(6\lfloor\) P/Y \\
12 ENTER
\end{tabular} \\
(making \(C / Y=P / Y=12)\) \\
\(27\lfloor\mathrm{~N}\)
\end{tabular}
    300 +/- PPMT
        CPT LFV
    Ans: 8649.11
```

Highlighted Concepts Throughout the book, statements of key concepts are highlighted, signalling to students the importance of the concept or principle.

> These ideas are so important and of such wide application in finance that they are formally embodied in the Valuation Principle.
> Valuation Principle
> The fair market value of an investment is the sum of the present values of the cash flows expected from the investment. The discount rate used in the present value calculations should be the prevailing market-determined rate of return on this type of investment.

If the expected cash flows are received as forecast, the investor's actual rate of return on the amount invested will be precisely the discount rate used in the fair market value calculation

Spreadsheet Templates Example problems and exercises indicated with a spreadsheet icon will direct students to an optional Microsoft Excel spreadsheet available on Connect. Each spreadsheet either demonstrates a solution of the example problem solved previously by algebraic or financial calculator methods or provides an alternative platform for solving the exercise problems. The spreadsheet is based on a pre-labelled and pre-formatted template.

Cases Some chapters include a case study in the end-of-chapter material. These cases usually call on concepts and skills from previous chapters as well as the current chapter.

CASE Calculations for an Investment Portfolio

One year ago, Jasmin and Derek opened investment accounts with a discount broker. In their C\$ account, they purchased 300 Bank of Montreal (BMO) shares at C $\$ 54.20$ per share and six Government of Canada bonds (GoCs) at C $\$ 1063$ per bond. In their US\$ account, they purchased 100 shares of International Business Machines (IBM) at US $\$ 125.50$ per share and 200 shares of General Electric (GE) at US $\$ 18.57$ per share. The exchange rate on the date of the purchases was $\mathrm{C} \$ 1.00=$ US $\$ 0.935$.

The income received from the securities during the year and their current prices are listed in the following table

	Number owned	Income received	Current price
BMO	300 shares	C $\$ 3.20$ per share	C $\$ 58.15$
GoCs	6 bonds	C $\$ 70.00$ per bond	C $\$ 1021.50$
IBM	100 shares	US $\$ 2.50$ per share	US $\$ 132.25$
GE	200 shares	US $\$ 0.50$ per share	US $\$ 20.38$
The current exchange rate is C $\$ 1.00=$			

QUESTIONS

1. What total amount in $\mathrm{C} \$$ was initially invested in the portfolio?
2. What is the C\$ equivalent of the total income received during the year? (For converting the US\$ income to C\$, use the average of the beginning and ending exchange rates for the year.)
3. What is the current total value in $\mathrm{C} \$$ of the securities (not including income received)?
4. Including both income and change in value of the securities, what was the percentage increase in the value of Jasmin's and Derek's portfolios during the year?

Interactive Charts Through the online Connect platform, students can access interactive charts. Various Exercise problems (flagged by a "Connect" icon) invite the student to undertake an activity using an interactive chart. The student can change key variables and observe a graphic representation of the effect on the dependent variable (such as break-even point, present value, future value, market value, interest paid, amortization period, etc.).

End-of-Chapter Problems Each chapter ends with a comprehensive set of Review Problems covering the full range of topics and applications in the chapter.

Concept Questions Concept Questions are presented at the end of many sections. These questions exercise students' intuition and test their understanding of concepts and principles.

MARKET LEADING TECHNOLOGY

Learn without Limits

McGraw-Hill Connect ${ }^{\circledR}$ is an award-winning digital teaching and learning platform that gives students the means to better connect with their coursework, with their instructors, and with the important concepts that they will need to know for success now and in the future. With Connect, instructors can take advantage of McGraw-Hill's trusted content to seamlessly deliver assignments, quizzes, and tests online. McGraw-Hill Connect is a learning platform that continually adapts to each student, delivering precisely what they need, when they need it, so class time is more engaging and effective. Connect makes teaching and learning personal, easy, and proven.

Connect Key Features:

SmartBook®

As the first and only adaptive reading experience, SmartBook is changing the way students read and learn. SmartBook creates a personalized reading experience by highlighting the most important concepts a student needs to learn at that moment in time. As a student engages with SmartBook, the reading experience continuously adapts by highlighting content based on what each student knows and doesn't know. This ensures that he or she is focused on the content needed to close specific knowledge gaps, while it simultaneously promotes long-term learning.

Connect Insight ${ }^{\circledR}$

Connect Insight is Connect's new one-of-a-kind visual analytics dashboard-now available for instructors-that provides at-a-glance information regarding student performance, which is immediately actionable. By presenting assignment, assessment, and topical performance results together with a time metric that is easily visible for aggregate or individual results, Connect Insight gives instructors the ability to take a just-in-time approach to teaching and learning, which was never before available. Connect Insight presents data that help instructors improve class performance in a way that is efficient and effective.

Simple Assignment Management

With Connect, creating assignments is easier than ever, so instructors can spend more time teaching and less time managing.

- Assign SmartBook learning modules.
- Instructors can edit existing questions and create their own questions.
- Draw from a variety of text specific questions, resources, and test bank material to assign online.
- Streamline lesson planning, student progress reporting, and assignment grading to make classroom management more efficient than ever.

Smart Grading

When it comes to studying, time is precious. Connect helps students learn more efficiently by providing feedback and practice material when they need it, where they need it.

- Automatically score assignments, giving students immediate feedback on their work and comparisons with correct answers.
- Access and review each response; manually change grades or leave comments for students to review.
- Track individual student performance-by question, assignment or in relation to the class overall—with detailed grade reports.
- Reinforce classroom concepts with practice tests and instant quizzes.
- Integrate grade reports easily with Learning Management Systems including Blackboard, D2L, and Moodle.

Instructor Library

The Connect Instructor Library is a repository for additional resources to improve student engagement in and out of the class. It provides all the critical resources instructors need to build their course.

- Access Instructor resources.
- View assignments and resources created for past sections.
- Post your own resources for students to use.

Instructor Resources

- Instructor's Solutions Manual. Prepared by the author, with a technical review by Sarah Chan.
- Computerized Test Bank. Prepared by Sarah Chan.
- Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ Lecture Slides. Prepared by Rob Sorenson of Camosun College.

SUPERIOR LEARNING SOLUTIONS AND SUPPORT

The McGraw-Hill Education team is ready to help instructors assess and integrate any of our products, technology, and services into your course for optimal teaching and learning performance. Whether it's helping your students improve their grades, or putting your entire course online, the McGraw-Hill Education team is here to help you do it. Contact your Learning Solutions Consultant today to learn how to maximize all of McGraw-Hill Education's resources.

For more information, please visit us online: http://www.mheducation.ca/he/solutions

ACKNOWLEDGMENTS

The ninth edition represents the compound future value of contributions from many dedicated educators over the previous editions. A new debt of gratitude is owed to professors who participated in a review or worked on supplements for this edition. Their thoughtful comments and suggestions have made this a better text.

Our reviewers:

Lisa MacKay	SAIT Polytechnic
Erica Colter	NSCC
Sylvia Leskiw	MacEwan University
Pamela Quon	Athabasca University
Deborah Sauer	Capilano University
John Molendyk	Capilano University
James Hebert	Red River College
Asifa Aamir	UOIT
Rob Sorensen	Camosun College

I am especially indebted to those who have served as a Technical Reviewer or who have been instrumental in the preparation of supplemental resources for the book. Thanks in this regard go to Sarah Chan and Rob Sorenson.

I wish to thank the staff at McGraw-Hill Ryerson for their ongoing support, professionalism, and guidance: Sara Braithwaite (Product Manager), Erin Catto (Product Developer), Joanne Limebeer (Supervising Editor), Karen Fozard (Portfolio and Program Manager), and all others involved in the development and production of this edition.

I have been fortunate during the writing of this ninth edition to be teaching many of the topics at the same time as their writing. I wish to thank all of my students, past and present, for their valuable feedback, providing insight into the content of this edition through their eyes.

Finally, I send my love and thanks to my husband Mike and family members Leslie, John, Kasey, and Jeff, who are always there to support and encourage me and for providing a lot of take-out meals when deadlines were near. Thanks also go to Chloe and Lola for tirelessly sleeping under my desk (at the risk of being rolled over by my office chair) as this ninth edition came to life.

Chapter 1

Review and Applications of Basic Mathematics

CHAPTER OUTLINE

1.1 Order of Operations

1.2 Fractions, Decimals, and Percents
*1.3 Payroll
1.4 Simple and Weighted Averages
*1.5 Taxes
Appendix 1A: The Texas Instruments BA II PLUS Format Settings
(Sections and chapters preceded by an asterisk* may be omitted without loss of continuity.)

LEARNING OBJECTIVES

After completing this chapter, you will be able to:
L.01. Perform arithmetic operations in their proper order

L02 Convert fractions to their percent and decimal equivalents
L03 Maintain the proper number of digits in calculations
L.04 Perform calculations using fractions, decimals, and percents

L05 Calculate the gross earnings of employees paid a salary, an hourly wage, or commissions
L06 Calculate the simple average or weighted average (as appropriate) of a set of values
107 Perform basic calculations for the Goods and Services Tax, Harmonized Sales Tax, provincial sales tax, and real property tax

MATHEMATICS PLAYS A SIGNIFICANT ROLE in business. Clients and employers now expect higher education and outstanding performance from all levels of employees that includes a significant level of mathematics competency.

Even though most routine calculations in business are done electronically, the mathematics and statistics you study in your business program are more widely expected and more highly valued in business than ever before. As a successful business graduate you must know which information is relevant, which analyses or calculations should be performed, how to interpret the results, and how to explain the outcome in terms your clients and colleagues can understand.

Naturally, a college course in business mathematics or statistics will cover a broader range of topics (often in greater depth) than you might need for a particular industry. This broader education opens more career options to you and provides a stronger set of mathematical skills for your chosen career.

TIP

How to Succeed in Business Mathematics

Since various Business Mathematics and Mathematics of Finance courses start at different points in the book, this Tip appears at the beginning of each of the first four chapters. Connect has a guide entitled "How to Succeed in Business Mathematics." Read its first two sections (A. 1 and A.2) before you finish Chapter 1.

1.1 Order of Operations

L.01. When evaluating an expression such as

$$
5+3^{2} \times 2-4 \div 6
$$

there is potential for confusion about the sequence of mathematical steps. Do we just perform the indicated operations in a strict left-to-right sequence called chaining, or is some other order intended? To eliminate any possible confusion, mathematicians have agreed on the algebraic operating system (AOS), which sets out the rules for the use of brackets and the order of mathematical operations. The rules are:

Rules for Order of Operations

1. Perform operations within brackets (in the order of Steps 2,3 , and 4 below).
2. Evaluate the powers. ${ }^{1}$
3. Perform multiplication and division in order from left to right.
4. Perform addition and subtraction in order from left to right.

TIP

Remembering the Order of Operations: BEDMAS

To help remember AOS, the order of operations, you can use the acronym "BEDMAS" representing the sequence: Brackets, Exponents, Division and Multiplication, Addition and Subtraction.

[^0]
EXAMPLE 1.1A EXERCISES ILLUSTRATING THE ORDER OF MATHEMATICAL OPERATIONS

$$
\text { a. } \begin{aligned}
& 30-6 \div 3+5 \\
& =30-2+5 \\
& =33
\end{aligned}
$$

b. $(30-6) \div 3+5$
$=24 \div 3+5$
$=8+5$
$=13$
c. $\frac{30-6}{3+5}=\frac{24}{8}=3$
d. $72 \div(3 \times 2)-6$
$=72 \div 6-6$
$=12-6$
$=6$
e. $72 \div\left(3 \times 2^{2}\right)-6$
$=72 \div(3 \times 4)-6$
$=72 \div 12-6$
$=6-6$
$=0$
f. $72 \div(3 \times 2)^{2}-6$
$=72 \div 6^{2}-6$
$=72 \div 36-6$
$=2-6$
$=-4$
$=4(-3)-4(3)$
$=-12-12$
$=-24$
g. $4(2-5)-4(5-2) \quad$ Do operations within brackets first, then multiplication, then subtract.

Do division before subtraction and addition.

Do operations within brackets first; then do division before addition.

Brackets are implied in the numerator and the denominator.
Do operations within brackets first; then do division before subtraction.

Do operations within brackets (the power before the multiplication); then do division before subtraction.

Do operations within brackets first, then the power, then divide, then subtract.

EXERCISE 1.1

Answers to the odd-numbered problems are at the end of the book.

CALCULATOR-FREE PROBLEMS

Evaluate each of the following.

a. $10+10 \times 0$
b. $2 \times 2+4-8$
c. $(10+10) \times 0$
d. $2 \times(2+4)-8$
e. $0+3 \times 3-3^{2}+10$
f. $12-2 \times 5+2^{2} \times 0$
g. $0+3 \times 3-\left(3^{2}+10\right)$
h. $(12-2) \times\left(5+2^{2}\right) \times 0$
i. $\frac{2^{2}-4}{(4-2)^{2}}$
j. $\frac{(2-4)^{2}}{5-2^{2}}$

BASIC PROBLEMS

Evaluate each of the following. In Problems 17-22, evaluate the answers accurate to the cent.

1. $20-4 \times 2-8$
2. $18 \div 3+6 \times 2$
3. $(20-4) \times 2-8$
4. $18 \div(3+6) \times 2$
5. $20-(4 \times 2-8)$
6. $(18 \div 3+6) \times 2$
7. $54-36 \div 4+2^{2}$
8. $(5+3)^{2}-3^{2} \div 9+3$
9. $(54-36) \div(4+2)^{2}$
10. $5+\left(3^{2}-3\right)^{2} \div(9+3)$
11. $\frac{8^{2}-4^{2}}{(4-2)^{3}}$
12. $\frac{(8-4)^{2}}{4-2^{3}}$
13. $3(6+4)^{2}-5(17-20)^{2}$
14. $(4 \times 3-2)^{2} \div\left(4-3 \times 2^{2}\right)$
15. $[(20+8 \times 5)-7 \times(-3)] \div 9$
16. $5\left[19+\left(5^{2}-16\right)^{2}\right]^{2}$
17. $\$ 100\left(1+0.06 \times \frac{45}{365}\right)$
18. $\frac{\$ 200}{1+0.09 \times \frac{4}{12}}$
19. $\frac{\$ 500}{(1+0.05)^{2}}$
20. $\$ 1000(1+0.02)^{3}$
21. $\$ 100\left[\frac{(1+0.04)^{2}-1}{0.04}\right]$
22. $\$ 300\left[\frac{1-\frac{1}{(1+0.03)^{2}}}{0.03}\right]$

1.2 Fractions, Decimals, and Percents

Definitions

In the fraction $\frac{3}{4}$, the upper number (3) is called the numerator (or dividend) and the lower number (4) is the denominator (or divisor). In a proper fraction, the numerator is smaller than the denominator. An improper fraction has a numerator that is larger than the denominator. A mixed number contains a whole number plus a fraction. Equivalent fractions are fractions that are equal in value (even though their respective numerators and denominators differ). An equivalent fraction can be created by multiplying or dividing both the numerator and the denominator by the same number.

EXAMPLE 1.2A EXAMPLES OF TYPES OF FRACTIONS

a. $\frac{6}{13}$ is a proper fraction.
b. $\frac{17}{13}$ is an improper fraction.
c. $2 \frac{4}{13}$ is a mixed number.
d. $\frac{5}{13}, \frac{10}{26}, \frac{15}{39}$, and $\frac{20}{52}$ are equivalent fractions. Note that the second, third, and fourth fractions may be obtained by multiplying both the numerator and the denominator of the first fraction by 2,3 , and 4 , respectively.

EXAMPLE 1.2B CALCULATING AN EQUIVALENT FRACTION

Find the missing numbers that make the following three fractions equivalent.

$$
\frac{7}{12}=\frac{56}{?}=\frac{?}{300}
$$

SOLUTION

To create a fraction equivalent to $\frac{7}{12}$, both the numerator and the denominator must be multiplied by the same number. To obtain 56 in the numerator of the second equivalent fraction, 7 was multiplied by 8 . Hence, the denominator must also be multiplied by 8 . Therefore,

$$
\frac{7}{12}=\frac{7 \times 8}{12 \times 8}=\frac{56}{96}
$$

To obtain the denominator (300) in the third equivalent fraction, 12 was multiplied by $\frac{300}{12}=25$.
The numerator must also be multiplied by 25 . Hence, the equivalent fraction is

In summary,

$$
\frac{7 \times 25}{12 \times 25}=\frac{175}{300}
$$

$$
\frac{7}{12}=\frac{56}{96}=\frac{175}{300}
$$

Decimal and Percent Equivalents

1.02 In the fraction $\frac{3}{4}$, the denominator indicates the total number of parts or pieces and the numerator shows how many of the parts we are considering. In other words, $\frac{3}{4}$ is 3 of 4 parts.

The decimal equivalent value of a fraction is obtained by dividing the numerator by the denominator. The fraction $\frac{3}{4}$ then becomes the decimal equivalent 0.75 , indicating 0.75 parts of one whole piece.

To express the fraction in percent equivalent form, multiply the decimal equivalent by 100 (shift the decimal point two places to the right) and add the $\%$ symbol indicating parts of 100 . The fraction $\frac{3}{4}$ then becomes 75%, indicating 75 parts of 100 parts.

EXAMPLE 1.2C

FINDING THE DECIMAL AND PERCENT EQUIVALENTS OF FRACTIONS AND MIXED NUMBERS

Convert each of the following fractions and mixed numbers to its decimal equivalent and percent equivalent values.
a. $\frac{2}{5}=0.4=40 \%$
b. $\frac{5}{2}=2.5=250 \%$
c. $2 \frac{3}{4}=2.75=275 \%$
d. $\frac{5}{8}=0.625=62.5 \%$
e. $1 \frac{3}{16}=1.1875=118.75 \%$
f. $\frac{3}{1500}=0.002=0.2 \%$

TIP

Adding or Subtracting Fractions

To add or subtract any but the simplest of fractions, the easiest approach is to first convert each fraction to its decimal equivalent value. Then add or subtract the decimal equivalents as required.
For example, $\frac{5}{12}+\frac{23}{365}=0.41667+0.06301=0.4797$ to four-figure accuracy.

Rounding of Decimal and Percent Equivalents

L.08 For some fractions, the decimal equivalent has an endless series of digits. Such a number is called a nonterminating decimal. In some cases a nonterminating decimal contains a repeating digit or a repeating group of digits. This particular type of nonterminating decimal is referred to as a repeating decimal. A shorthand notation for repeating decimals is to place a horizontal bar over the first occurrence of the repeating digit or group of digits. For example,

$$
\frac{2}{9}=0.222222=0 . \overline{2} \quad \text { and } \quad 2 \frac{4}{11}=2.36363636=2 . \overline{36}
$$

When a nonterminating decimal or its percent equivalent is used in a calculation, the question arises: How many figures or digits should be retained? The following rules provide sufficient accuracy for the vast majority of our calculations.

Rules for Rounding Numbers

1. In intermediate results, keep one more figure than the number of figures required in the final result. (When counting figures for the purpose of rounding, do not count leading zeros used only to properly position the decimal point.) ${ }^{2}$
2. If the first digit dropped is 5 or greater, increase the last retained digit by 1.
3. If the first digit dropped is less than 5 , leave the last retained digit unchanged.

Suppose, for example, the answer to a calculation is expected to be a few hundred dollars and you want the answer accurate to the cent. In other words, you require five-figure accuracy in your answer. To achieve this accuracy, the first rule says you should retain (at least) six figures in values used in the calculations. The rule also applies to intermediate results that you carry forward to subsequent calculations. The consequence of rounding can be stated in another way-if, for example, you use a number rounded to four figures in your calculations, you can expect only three-figure accuracy in your final answer.

EXAMPLE 1.2D FRACTIONS HAVING REPEATING DECIMAL EQUIVALENTS

Convert each of the following fractions to its decimal equivalent value expressed in the repeating decimal notation.
a. $\frac{2}{3}=0.6666 \ldots=0 . \overline{6}$
b. $\frac{14}{9}=1.555 \ldots=1 . \overline{5}$
c. $6 \frac{1}{12}=6.08333 \ldots=6.08 \overline{3}$
d. $3 \frac{2}{11}=3.181818 \ldots=3 . \overline{18}$
e. $5 \frac{2}{27}=5.074074 \ldots=5 . \overline{074}$
f. $\frac{5}{7}=0.714285714285 \ldots=0 . \overline{714285}$

[^1]
EXAMPLE 1.2E CALCULATING AND ROUNDING THE DECIMAL EQUIVALENTS OF FRACTIONS

Convert each of the following fractions and mixed numbers to its decimal equivalent value rounded to four-figure accuracy.
a. $\frac{2}{3}=0.6667$
b. $6 \frac{1}{12}=6.083$
c. $\frac{173}{11}=15.73$
d. $\frac{2}{1071}=0.001867$
e. $\frac{17,816}{3}=5939$

TRAP

Common Rounding Errors

The following examples illustrate two of the most common rounding errors. Each example requires rounding to two decimal places or three significant digits:

Example 1: $\quad 2.4449=2.445=2.45$ This is NOT correct.
For rounding to two decimal places, you only need to consider the third decimal place to apply Rule 3.

Here, continuous rounding has been applied starting with the first digit that is 5 or larger. The correct answer is 2.44.

Example 2: $\quad 2.992=2.99=3.00 \quad$ This is NOT correct.
The value is originally rounded correctly using Rule 3 but then rounded again applying Rule 2 .
Round one time only to achieve the required number of significant digits. The correct answer is 2.99 .

EXAMPLE 1.2F DEMONSTRATING THE CONSEQUENCES OF TOO MUCH ROUNDING

Accurate to the cent, evaluate

$$
\$ 140\left(1+0.11 \times \frac{113}{365}\right)+\$ 74\left(1+0.09 \times \frac{276}{365}\right)
$$

SOLUTION

If you want five-figure accuracy in your answer, you cannot round to fewer than six figures at any stage of the calculations. The following table illustrates how too much rounding can result in an inaccurate answer.

If we first evaluate the contents of the brackets before rounding, we obtain: $\$ 140(1.0340548)+\$ 74(1.0680548)$

6-Figure Accuracy	5-Figure Accuracy	3-Figure Accuracy
$\$ 140(1.03405)+\$ 74(1.06805)$	$\$ 140(1.0341)+\$ 74(1.0681)$	$\$ 140(1.03)+\$ 74(1.07)$
$=\$ 144.767+\$ 79.0357$	$=\$ 144.774+\$ 79.0394$	$=\$ 144.20+\$ 79.18$
$=\$ 223.8027$	$=\$ 223.8134$	$=\$ 223.38$
$=\$ 223.80$ (rounded to the cent)	$=\$ 223.81$ (rounded to the cent)	
Correct answer	$\$ 0.01$ larger than correct answer	$\$ 0.42$ smaller than correct answer

One more point is worth noting. Consider the first column, where you properly maintained six-figure accuracy. That is,

$$
\$ 140(1.03405)+\$ 74(1.06805)=\$ 144.767+\$ 79.0357
$$

Suppose you round the two amounts on the right side to the nearest cent before you add them. The sum is then

$$
\$ 144.77+\$ 79.04=\$ 223.81
$$

which is $\$ 0.01$ larger than the correct answer. The error arises because, just at the final addition, you failed to maintain six-figure accuracy (to ensure five-figure accuracy in the final answer).

TIP

Optimal Use of Your Calculator

Whenever possible, use your calculator's memory registers to save intermediate results. This will save time and reduce keystroke errors during data re-entry. It also virtually eliminates the introduction of rounding errors, since most calculators internally retain two or three more figures than are shown in the display. Example 1.2G illustrates this approach.

EXAMPLE 1.2G OPTIMAL USE OF YOUR CALCULATOR

We will again evaluate (accurate to the cent) the same expression as in Example 1.2F,

$$
\$ 140\left(1+0.11 \times \frac{113}{365}\right)+\$ 74\left(1+0.09 \times \frac{276}{365}\right)
$$

This time we will use our financial calculator in a way that (1) avoids manual re-entry of intermediate results, and (2) maintains maximum precision by avoiding rounding (other than rounding imposed by the inherent limitations of the calculator).

SOLUTION

We assume the Texas Instruments BA II PLUS calculator is set for a floating-decimal format and for the algebraic operating system (AOS) calculation method. (Refer to Appendix 1A for instructions on making these settings.) In the AOS mode, we can enter numbers, brackets, and operations in the same left-to-right sequence as they are written. The calculator performs the calculations according to the proper order of operations.

The result is $\$ 223.80$.
You see that it is possible to evaluate quite complex expressions without writing down intermediate results.
However, if someone is going to read and readily understand your solution, you should present enough detail and intermediate results to reveal the steps in your solution.

TIP

Using a Calculator's Power Function

Use the following sequence of keystrokes to evaluate 1.62^{5} with the power function key \qquad y^{x}

$$
1.62 \square y^{x} 5 \square=
$$

If the symbol y^{x} sits above a calculator key (rather than on it), the power function is the secondary function of the key. The keystroke sequence is then

$$
1.622 \mathrm{2nd} \square y^{x} 5=
$$

The answer to seven-figure accuracy is 11.15771.
Example 1.2H uses this feature.

Evaluating Complex Fractions

A complex fraction is a fraction containing one or more other fractions in its numerator or denominator. In simplifying complex fractions, particular attention should be paid to the correct order of mathematical operations as discussed in Section 1.1.

EXAMPL $=1.2 \mathrm{H}$ EVALUATING COMPLEX FRACTIONS

Evaluate each of the following complex fractions accurate to the cent.
a. $\frac{\$ 425}{\left(1+\frac{0.09}{12}\right)^{24}}$
b. $\frac{\$ 1265\left(1+0.115 \times \frac{87}{365}\right)}{1+0.125 \times \frac{43}{365}}$
c. $\frac{\$ 1}{1+0.025 \times \frac{5}{12}}+\frac{\$ 1}{1+0.04 \times \frac{2}{12}}$

SOLUTION

We assume the Texas Instruments BA II PLUS calculator is set for a floating-decimal format and for the algebraic operating system (AOS) calculation method. Refer to Appendix 1A for instructions on making these settings.
a. $425 \square \div\left(\square 1 \square+0.09 \square \div y^{x} 24 \square=355.23\right.$

The result is $\$ 355.23$.
b. One-step method where additional brackets must be used for the denominator:

Two-step method using the calculator's memories to store intermediate answers:
$1265 \times(1+0.115 \times 87 \div 365)=1299.674863$ STO 1
$1+0.125 \times 43 \div 365=1.014726027$ STO 2
RCL $1 \div$ RCL $2=\$ 1280.81$
The result is $\$ 1280.81$
c. $1+0.025 \times 5 \div 12=1.01041666671 / \mathrm{X}(0.989690722)$ STO 1
$1+0.04 \times 2 \div 12=1.0066666671 / \mathrm{X}(0.993377483) \mathrm{STO} 2$
RCL $1+$ RCL $2=\$ 1.98$
The result is $\$ 1.98$.

Calculating Percent of a Number

L.04 Calculating the percent of a number is one of the most common calculations in business. To find the percent of a number, convert the percent to its decimal equivalent by dividing the percent by 100 (shifting the decimal point two places to the left) and then multiplying by the number.

EXAMPLE 1.2|

a. What is 22% of $\$ 185$?
b. What is $40 \frac{1}{4} \%$ of $\$ 140.25$?
c. How much is $0.08 \overline{3} \%$ of $\$ 5000$?
d. How much is 140% of $\$ 50$?

SOLUTION

a. The question asks us to calculate a part (percent) of a given whole. By converting 22% to its decimal equivalent we obtain

$$
\frac{22}{100} \times \$ 185=0.22 \times \$ 185=\$ 40.70
$$

That is, 22% of $\$ 185$ is $\$ 40.70$.
b. $40 \frac{1}{4} \%$ of $\$ 140.25$ becomes

$$
40.25 \% \times \$ 140.25=0.4025 \times \$ 140.25=\$ 56.45
$$

That is, $40 \frac{1}{4} \%$ of $\$ 140.25$ is $\$ 56.45$.
c. In converting $0.08 \overline{3} \%$ to its decimal equivalent, we need to be careful to maintain the correct accuracy in calculations to have our answer accurate to the cent. Since 1% of $\$ 5000$ is $\$ 50$, then 0.1% of $\$ 5000$ is only $\$ 5$. Therefore, the answer will be a little less than $\$ 5$. For the answer to be accurate to the cent, we seek three-figure accuracy.

$$
0.08 \overline{3} \% \times \$ 5000=0.0008333 \times \$ 5000=\$ 4.17
$$

Therefore, $\$ 4.17$ is $0.08 \overline{3} \%$ of $\$ 5000$.
d. Here the percentage is greater than 100% so the answer will be larger than the original value of $\$ 50$.

$$
1.40 \times \$ 50=\$ 70
$$

Therefore, 140% of $\$ 50$ is $\$ 70$.

TRAP

Decimal Equivalent of Percentages Smaller Than 1\%

When a percent is less than 1%, students sometimes forget to move the decimal two places to the left in order to obtain the decimal equivalent. For example, be clear on the distinction between 0.25% and 25%. The former is just $\frac{1}{4}$ of 1%-the latter is 25 times 1%. Their decimal equivalents are 0.0025 and 0.25 , respectively. In terms of equivalent fractions, 0.25% equals $\frac{1}{400}$, but 25% equals $\frac{1}{4}$.

EXAMPLE 1.2J A WORD PROBLEM REQUIRING THE USE OF PERCENTS

A battery manufacturer encloses a rebate coupon for 15% off in a package of two AAA batteries retailing for $\$ 6.29$. What rebate does the coupon represent?

SOLUTION

In effect, the question is asking you to find 15% of the retail price.

$$
\text { Rebate }=0.15 \times \$ 6.29=\$ 0.94
$$

The manufacturer's 15% rebate on the batteries is equivalent to a cash rebate of $\$ 0.94$.

[^0]: ${ }^{1}$ A power is a quantity such as 3^{2} or 5^{3} (which are shorthand methods for representing 3×3 and $5 \times 5 \times 5$, respectively). Section 2.2 includes a review of powers and exponents.

[^1]: 2 The following example illustrates the reasoning behind this instruction. A length of 6 mm is neither more nor less precise than a length of 0.006 m . (Recall that there are 1000 mm in 1 m .) The leading zeros in 0.006 m do not add precision to the measurement. They are inserted to properly position the decimal point. Both measurements have onefigure accuracy. Contrast this case with measurements of 1007 mm and 1.007 m . Here each zero comes from a decision about what the digit should be (rather than where the decimal point should be). These measurements both have fourfigure accuracy. This rule applies to the total number of figures (other than leading zeros) in a value. It does not apply to the number of decimal places

